The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317552 Irregular triangle where T(n,k) is the sum of coefficients in the expansion of p(y) in terms of Schur functions, where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k). 14
 1, 0, 2, 1, 0, 4, 0, 2, 1, 0, 10, 1, 0, 0, 2, 2, 0, 26, 0, 0, 1, 4, 0, 0, 0, 4, 4, 0, 76, 1, 0, 0, 0, 0, 2, 2, 4, 0, 0, 0, 8, 10, 0, 232, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 12, 0, 4, 2, 8, 0, 0, 0, 20, 26, 0, 764, 1, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 1, 10, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Is this sequence nonnegative? If so, is there a combinatorial interpretation? LINKS EXAMPLE Triangle begins:    1    0   2    1   0   4    0   2   1   0  10    1   0   0   2   2   0  26    0   0   1   4   0   0   0   4   4   0  76    1   0   0   0   0   2   2   4   0   0   0   8  10   0 232 A215366(6,4) = 25 corresponds to the partition (33). Since p(33) = s(6) + 2 s(33) - s(51) + 2 s(222) - 2 s(321) + s(411) + s(3111) - s(21111) + s(111111) has sum of coefficients 1 + 2 - 1 + 2 - 2 + 1 + 1 - 1 + 1 = 4, we conclude T(6,4) = 4. CROSSREFS Last column is A000085. Row sums are A082733. Cf. A056239, A093641, A153452, A153734, A215366, A296188, A296561, A299699, A305940, A317554. Sequence in context: A185964 A143424 A130125 * A214809 A137336 A115322 Adjacent sequences:  A317549 A317550 A317551 * A317553 A317554 A317555 KEYWORD nonn,tabf AUTHOR Gus Wiseman, Sep 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 17:28 EDT 2020. Contains 334684 sequences. (Running on oeis4.)