

A317554


Sum of coefficients in the expansion of p(y) in terms of Schur functions, where p is powersum symmetric functions and y is the integer partition with Heinz number n.


14



1, 1, 0, 2, 1, 0, 0, 4, 2, 1, 1, 0, 0, 0, 0, 10, 1, 2, 0, 2, 0, 1, 1, 0, 4, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(1) = 1 by convention.
Is this sequence is nonnegative? If so, is there a combinatorial interpretation?


LINKS

Table of n, a(n) for n=1..30.


EXAMPLE

We have p(33) = s(6) + 2 s(33)  s(51) + 2 s(222)  2 s(321) + s(411) + s(3111)  s(21111) + s(111111). The coefficients add up to 4, and the Heinz number of (33) is 25, so a(25) = 4.


CROSSREFS

Cf. A000085, A056239, A082733, A124794, A124795, A153452, A296188, A296561, A300121, A304438, A317552, A319191, A319225.
Sequence in context: A204040 A325773 A220779 * A089975 A034366 A121465
Adjacent sequences: A317551 A317552 A317553 * A317555 A317556 A317557


KEYWORD

nonn,more


AUTHOR

Gus Wiseman, Sep 14 2018


STATUS

approved



