OFFSET
0,6
COMMENTS
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
T(n,0)=fibonacci(2*n-3)-1; T(n,k)=2^(k-1)*(fibonacci(2n-2k-3)-1) for 1<=k<=n. G.f.=G=G(t,z)=(1-2z)^2*(1-tz)/[(1-3z+z^2)(1-z)(1-2tz)].
EXAMPLE
T(5,2)=2 because we have (UD)(UD)UUDUDD and (UUDD)UUDUDD, where U=(1,1) and D=(1,-1) (the triangles are shown between parentheses).
Triangle starts:
1;
0,1;
0,0,2;
1,0,0,4;
4,1,0,0,8;
12,4,2,0,0,16;
MAPLE
with(combinat): T:=proc(n, k) if k=0 then fibonacci(2*n-3)-1 elif k<=n then 2^(k-1)*(fibonacci(2*n-2*k-3)-1) else 0 fi end: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 01 2006
STATUS
approved