login
A121465
Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n such that the sum of the heights of their triangles is k (0<=k<=n). A triangle in a Dyck path is a subpath of the form U^h D^h, starting at the x-axis; here U=(1,1), D=(1,-1), h being the height of the triangle.
0
1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 1, 0, 0, 8, 12, 4, 2, 0, 0, 16, 33, 12, 8, 4, 0, 0, 32, 88, 33, 24, 16, 8, 0, 0, 64, 232, 88, 66, 48, 32, 16, 0, 0, 128, 609, 232, 176, 132, 96, 64, 32, 0, 0, 256, 1596, 609, 464, 352, 264, 192, 128, 64, 0, 0, 512, 4180, 1596, 1218, 928, 704, 528
OFFSET
0,6
COMMENTS
Row sums are the odd-subscripted Fibonacci numbers (A001519). T(n,0)=fibonacci(2n-3)-1=A027941(n-2). Sum(k*T(n,k),k=0..n)=fibonacci(2n+1)-1=A027941(n).
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
T(n,0)=fibonacci(2*n-3)-1; T(n,k)=2^(k-1)*(fibonacci(2n-2k-3)-1) for 1<=k<=n. G.f.=G=G(t,z)=(1-2z)^2*(1-tz)/[(1-3z+z^2)(1-z)(1-2tz)].
EXAMPLE
T(5,2)=2 because we have (UD)(UD)UUDUDD and (UUDD)UUDUDD, where U=(1,1) and D=(1,-1) (the triangles are shown between parentheses).
Triangle starts:
1;
0,1;
0,0,2;
1,0,0,4;
4,1,0,0,8;
12,4,2,0,0,16;
MAPLE
with(combinat): T:=proc(n, k) if k=0 then fibonacci(2*n-3)-1 elif k<=n then 2^(k-1)*(fibonacci(2*n-2*k-3)-1) else 0 fi end: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A317554 A089975 A034366 * A192396 A094449 A274776
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 01 2006
STATUS
approved