OFFSET
0,8
COMMENTS
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
T(n,k)=binomial(n,k)+Sum(binomial(n-j,k)*fibonacci(2j-4), j=1..n-k). G.f.=G=G(t,z)=(1-2z)^2/[(1-3z+z^2)(1-z-tz)].
EXAMPLE
T(4,1)=2 because we have (UD)UUDUDD and UUDUDD(UD), where U=(1,1) and D=(1,-1) (the triangles are shown between parentheses).
Triangle starts:
1;
0,1;
0,1,1;
1,1,2,1;
4,2,3,3,1;
12,6,5,6,4,1;
MAPLE
with(combinat): T:=(n, k)->binomial(n, k)+add(binomial(n-j, k)*fibonacci(2*j-4), j=1..n-k): for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 01 2006
STATUS
approved