OFFSET
0,3
COMMENTS
Consider polynomials B_a(n, x) = a^n*Sum_{k=0..n} binomial(n, k)*Bernoulli(k, 1/a)*x^(n - k), with a != 0. They form an Appell sequence, the case a = 1 are the Bernoulli polynomials. T(n, k) are the numerators of the coefficients of the polynomials in the case a = 2.
FORMULA
EXAMPLE
Rational polynomials start, coefficients of [numerators | denominators]:
[ [1], [ 1]]
[[0, 2], [ 1, 1]]
[[-1, 0, 4], [ 3, 1, 1]]
[[0, -2, 0, 8], [ 1, 1, 1, 1]]
[[7, 0, -8, 0, 16], [15, 1, 1, 1, 1]]
[[0, 14, 0, -80, 0, 32], [ 1, 3, 1, 3, 1, 1]]
[[-31, 0, 28, 0, -80, 0, 64], [21, 1, 1, 1, 1, 1, 1]]
[[0, -62, 0, 392, 0, -224, 0, 128], [ 1, 3, 1, 3, 1, 1, 1, 1]]
[[127, 0, -496, 0, 1568, 0, -1792, 0, 256], [15, 1, 3, 1, 3, 1, 3, 1, 1]]
[[0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512], [ 1, 5, 1, 1, 1, 5, 1, 1, 1, 1]]
MAPLE
Bcp := n -> 2^n*add(binomial(n, k)*bernoulli(k, 1/2)*x^(n-k), k=0..n):
polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)):
Trow := n -> polycoeff(Bcp(n)): seq(Trow(n), n=0..10);
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Jul 24 2020
STATUS
approved