login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336517
T(n, k) = numerator([x^k] b(n, x)), where b(n, x) = 2^n*Sum_{k=0..n} binomial(n, k) * Bernoulli(k, 1/2) * x^(n-k). Triangle read by rows, for 0 <= k <= n.
2
1, 0, 2, -1, 0, 4, 0, -2, 0, 8, 7, 0, -8, 0, 16, 0, 14, 0, -80, 0, 32, -31, 0, 28, 0, -80, 0, 64, 0, -62, 0, 392, 0, -224, 0, 128, 127, 0, -496, 0, 1568, 0, -1792, 0, 256, 0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512, -2555, 0, 1524, 0, -4960, 0, 6272, 0, -3840, 0, 1024
OFFSET
0,3
COMMENTS
Consider polynomials B_a(n, x) = a^n*Sum_{k=0..n} binomial(n, k)*Bernoulli(k, 1/a)*x^(n - k), with a != 0. They form an Appell sequence, the case a = 1 are the Bernoulli polynomials. T(n, k) are the numerators of the coefficients of the polynomials in the case a = 2.
FORMULA
Denominator(b(n, 1)) = A141459(n).
Numerator(b(n, -1)) = A285866(n).
Numerator(b(n, 0) = A157779(n).
EXAMPLE
Rational polynomials start, coefficients of [numerators | denominators]:
[ [1], [ 1]]
[[0, 2], [ 1, 1]]
[[-1, 0, 4], [ 3, 1, 1]]
[[0, -2, 0, 8], [ 1, 1, 1, 1]]
[[7, 0, -8, 0, 16], [15, 1, 1, 1, 1]]
[[0, 14, 0, -80, 0, 32], [ 1, 3, 1, 3, 1, 1]]
[[-31, 0, 28, 0, -80, 0, 64], [21, 1, 1, 1, 1, 1, 1]]
[[0, -62, 0, 392, 0, -224, 0, 128], [ 1, 3, 1, 3, 1, 1, 1, 1]]
[[127, 0, -496, 0, 1568, 0, -1792, 0, 256], [15, 1, 3, 1, 3, 1, 3, 1, 1]]
[[0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512], [ 1, 5, 1, 1, 1, 5, 1, 1, 1, 1]]
MAPLE
Bcp := n -> 2^n*add(binomial(n, k)*bernoulli(k, 1/2)*x^(n-k), k=0..n):
polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)):
Trow := n -> polycoeff(Bcp(n)): seq(Trow(n), n=0..10);
CROSSREFS
Cf. A285865 (denominators), A336454 (polynomial denominator), A141459, A157779, A285866.
Sequence in context: A185964 A143424 A130125 * A317552 A214809 A363902
KEYWORD
sign,frac,tabl
AUTHOR
Peter Luschny, Jul 24 2020
STATUS
approved