Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 21 2024 15:20:12
%S 1,0,2,-1,0,4,0,-2,0,8,7,0,-8,0,16,0,14,0,-80,0,32,-31,0,28,0,-80,0,
%T 64,0,-62,0,392,0,-224,0,128,127,0,-496,0,1568,0,-1792,0,256,0,762,0,
%U -992,0,9408,0,-1536,0,512,-2555,0,1524,0,-4960,0,6272,0,-3840,0,1024
%N T(n, k) = numerator([x^k] b(n, x)), where b(n, x) = 2^n*Sum_{k=0..n} binomial(n, k) * Bernoulli(k, 1/2) * x^(n-k). Triangle read by rows, for 0 <= k <= n.
%C Consider polynomials B_a(n, x) = a^n*Sum_{k=0..n} binomial(n, k)*Bernoulli(k, 1/a)*x^(n - k), with a != 0. They form an Appell sequence, the case a = 1 are the Bernoulli polynomials. T(n, k) are the numerators of the coefficients of the polynomials in the case a = 2.
%F Denominator(b(n, 1)) = A141459(n).
%F Numerator(b(n, -1)) = A285866(n).
%F Numerator(b(n, 0)) = A157779(n).
%e Rational polynomials start, coefficients of [numerators | denominators]:
%e [ [1], [ 1]]
%e [[0, 2], [ 1, 1]]
%e [[-1, 0, 4], [ 3, 1, 1]]
%e [[0, -2, 0, 8], [ 1, 1, 1, 1]]
%e [[7, 0, -8, 0, 16], [15, 1, 1, 1, 1]]
%e [[0, 14, 0, -80, 0, 32], [ 1, 3, 1, 3, 1, 1]]
%e [[-31, 0, 28, 0, -80, 0, 64], [21, 1, 1, 1, 1, 1, 1]]
%e [[0, -62, 0, 392, 0, -224, 0, 128], [ 1, 3, 1, 3, 1, 1, 1, 1]]
%e [[127, 0, -496, 0, 1568, 0, -1792, 0, 256], [15, 1, 3, 1, 3, 1, 3, 1, 1]]
%e [[0, 762, 0, -992, 0, 9408, 0, -1536, 0, 512], [ 1, 5, 1, 1, 1, 5, 1, 1, 1, 1]]
%p Bcp := n -> 2^n*add(binomial(n,k)*bernoulli(k,1/2)*x^(n-k), k=0..n):
%p polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)):
%p Trow := n -> polycoeff(Bcp(n)): seq(Trow(n), n=0..10);
%Y Cf. A285865 (denominators), A336454 (polynomial denominator), A141459, A157779, A285866.
%K sign,frac,tabl,changed
%O 0,3
%A _Peter Luschny_, Jul 24 2020