login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130125 Triangle defined by A128174 * A130123, read by rows. 5
1, 0, 2, 1, 0, 4, 0, 2, 0, 8, 1, 0, 4, 0, 16, 0, 2, 0, 8, 0, 32, 1, 0, 4, 0, 16, 0, 64, 0, 2, 0, 8, 0, 32, 0, 128, 1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 1024, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 0, 2048 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums = A000975: (1, 2, 5, 10, 21, 42, ...).

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

A128174 * A130123 as infinite lower triangular matrices. By columns, (2^k, 0, 2^k, 0, ...).

T(n,k) = 2^(k-1)*(1 + (-1)^(n-k)). - G. C. Greubel, Jun 05 2019

EXAMPLE

First few rows of the triangle are:

  1;

  0, 2;

  1, 0, 4;

  0, 2, 0, 8;

  1, 0, 4, 0, 16;

  0, 2, 0, 8,  0, 32; ...

MATHEMATICA

Table[2^(k-1)*(1+(-1)^(n-k)), {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)

PROG

(PARI) {T(n, k) = 2^(k-1)*(1+(-1)^(n-k))}; \\ G. C. Greubel, Jun 05 2019

(MAGMA) [[2^(k-1)*(1+(-1)^(n-k)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 05 2019

(Sage) [[2^(k-1)*(1+(-1)^(n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jun 05 2019

(GAP) Flat(List([0..10], n-> List([0..n], k-> 2^(k-1)*(1+(-1)^(n-k)) ))); # G. C. Greubel, Jun 05 2019

CROSSREFS

Cf. A000975, A128174, A130123.

Sequence in context: A088850 A185964 A143424 * A317552 A214809 A137336

Adjacent sequences:  A130122 A130123 A130124 * A130126 A130127 A130128

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, May 11 2007

EXTENSIONS

More terms added by G. C. Greubel, Jun 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 17:37 EDT 2020. Contains 334684 sequences. (Running on oeis4.)