This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0,...). 8
 1, 0, 2, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A 2^n transform matrix. A130123 * A007318 = A038208. A007318 * A130123 = A013609. A130124 = A130123 * A002260. A130125 = A128174 * A130123. Triangle T(n,k), 0<=k<=n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . - Philippe Deléham, May 26 2007 Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016 LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA G.f.: 1/(1-2*x*y). - R. J. Mathar, Aug 11 2015 EXAMPLE First few terms of the triangle are:   1;   0, 2;   0, 0, 4;   0, 0, 0, 8;   0, 0, 0, 0, 16;   0, 0, 0, 0, 0, 32; ... MAPLE # The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n=0, 2, 0), 9); # Peter Luschny, Jan 27 2016 MATHEMATICA BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[If[# == 0, 2, 0]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *) Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *) PROG (PARI) {T(n, k) = if(k==n, 2^n, 0)}; \\ G. C. Greubel, Jun 05 2019 (MAGMA) [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // G. C. Greubel, Jun 05 2019 (Sage) def T(n, k):     if (k==n): return 2^n     else: return 0 [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jun 05 2019 CROSSREFS Cf. A130124, A130125. Sequence in context: A028590 A074644 A321256 * A319935 A136337 A028601 Adjacent sequences:  A130120 A130121 A130122 * A130124 A130125 A130126 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, May 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 03:31 EST 2019. Contains 329978 sequences. (Running on oeis4.)