login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130124 Triangle defined by A130123 * A002260, read by rows. 2
1, 2, 4, 4, 8, 12, 8, 16, 24, 32, 16, 32, 48, 64, 80, 32, 64, 96, 128, 160, 192, 64, 128, 192, 256, 320, 384, 448, 128, 256, 384, 512, 640, 768, 896, 1024, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums = A001780, (1, 6, 24, 80, 240, ...).

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

FORMULA

A130123 * A002260, where A130123 = the 2^n transform and A002260 = [1; 1, 2; 1, 2, 3; ...).

T(n, k) = 2^(n-1)*k. - G. C. Greubel, Jun 05 2019

EXAMPLE

First few rows of the triangle are:

   1;

   2,  4;

   4,  8, 12;

   8, 16, 24,  32;

  16, 32, 48,  64,  80;

  32, 64, 96, 128, 160, 192; ...

MATHEMATICA

Table[2^(n-1)*k, {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)

PROG

(PARI) {T(n, k) = 2^(n-1)*k}; \\ G. C. Greubel, Jun 05 2019

(MAGMA) [[2^(n-1)*k: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 05 2019

(Sage) [[2^(n-1)*k for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 05 2019

(GAP) Flat(List([1..12], n-> List([1..n], k-> 2^(n-1)*k ))); # G. C. Greubel, Jun 05 2019

CROSSREFS

Cf. A001780, A130123, A002260.

Sequence in context: A338986 A319803 A055946 * A265417 A076342 A135268

Adjacent sequences:  A130121 A130122 A130123 * A130125 A130126 A130127

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, May 11 2007

EXTENSIONS

More terms added by G. C. Greubel, Jun 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 11:15 EDT 2022. Contains 353949 sequences. (Running on oeis4.)