



1, 1, 2, 2, 2, 4, 2, 4, 4, 8, 3, 4, 8, 8, 16, 3, 6, 8, 16, 16, 32, 4, 6, 12, 16, 32, 32, 64, 4, 8, 12, 24, 32, 64, 64, 128, 5, 8, 16, 24, 48, 64, 128, 128, 256, 5, 10, 16, 32, 48, 96, 128, 256, 256, 512, 6, 10, 20, 32, 64, 96, 192, 256, 512, 512, 1024, 6, 12, 20, 40, 64, 128, 192, 384, 512, 1024, 1024, 2048
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Row sums = A011377: (1, 3, 8, 18, 39, ...). A130126 = A130125 * A000012.


LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened


FORMULA

T(n,k) = 2^(k1) * floor((nk+2)/2).  G. C. Greubel, Jun 06 2019


EXAMPLE

First few rows of the triangle:
1;
1, 2;
2, 2, 4;
2, 4, 4, 8;
3, 4, 8, 8, 16;
3, 6, 8, 16, 16, 32;
4, 6, 12, 16, 32, 32, 64;
...


MATHEMATICA

Table[2^(k1)*Floor[(nk+2)/2], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Jun 06 2019 *)


PROG

(PARI) {T(n, k) = 2^(k1)*floor((nk+2)/2)}; \\ G. C. Greubel, Jun 06 2019
(Magma) [[2^(k1)*Floor((nk+2)/2): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 06 2019
(Sage) [[2^(k1)*floor((nk+2)/2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 06 2019


CROSSREFS

Cf. A000012, A130125, A130126, A011377.
Sequence in context: A330772 A105681 A240039 * A217982 A184727 A342457
Adjacent sequences: A130124 A130125 A130126 * A130128 A130129 A130130


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, May 11 2007


EXTENSIONS

More terms added by G. C. Greubel, Jun 06 2019


STATUS

approved



