login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336519
Primes in Pi (variant of A336520): a(n) is the smallest prime factor of A090897(n) that does not appear in earlier terms of a, or 1, if no such factor exists.
2
3, 2, 53, 7, 58979, 161923, 2643383, 1746893, 6971, 5, 17, 1499, 11, 1555077581737, 297707, 13, 37, 126541, 2130276389911155737, 1429, 71971, 383, 61, 1559, 29, 193, 12073, 698543, 157, 20289606809, 23687, 1249, 59, 2393, 251, 101, 15827173, 82351, 661
OFFSET
1,1
COMMENTS
Inspired by a comment of Mario Cortés in A090897, who suggests that 1 might not appear in this sequence.
EXAMPLE
[ 1] 3, {3} -> 3;
[ 2] 14, {2, 7} -> 2;
[ 3] 159, {3, 53} -> 53;
[ 4] 2653, {7, 379} -> 7;
[ 5] 58979, {58979} -> 58979;
[ 6] 323846, {2, 161923} -> 161923;
[ 7] 2643383, {2643383} -> 2643383;
[ 8] 27950288, {2, 1746893} -> 1746893;
[ 9] 419716939, {6971, 60209} -> 6971;
[10] 9375105820, {2, 5, 1163, 403057} -> 5.
MAPLE
aList := proc(len) local p, R, spl; R := [];
spl := L -> [seq([seq(L[i], i=1 + n*(n+1)/2..(n+1)*(n+2)/2)], n=0..len)]:
ListTools:-Reverse(convert(floor(Pi*10^((len+1)*(len+2)/2)), base, 10)):
map(`@`(parse, cat, op), spl(%)); map(NumberTheory:-PrimeFactors, %);
for p in % do ListTools:-SelectFirst(p -> evalb(not p in R), p);
R := [op(R), `if`(%=NULL, 1, %)] od end: aList(30);
MATHEMATICA
Block[{nn = 38, s}, s = RealDigits[Pi, 10, (# + 1) (# + 2)/2 &@ nn][[1]]; Nest[Function[{a, n}, Append[a, SelectFirst[FactorInteger[FromDigits@ s[[1 + n (n + 1)/2 ;; (n + 1) (n + 2)/2 ]]][[All, 1]], FreeQ[a, #] &] /. k_ /; MissingQ@ k -> 1]] @@ {#, Length@ #} &, {}, nn + 1]] (* Michael De Vlieger, Aug 21 2020 *)
PROG
(SageMath)
def Select(item, Selected):
return next((x for x in item if not (x in Selected)), 1)
def PiPart(n):
return floor(pi * 10^(n * (n + 1) // 2 - 1)) % 10^n
def A336519List(len):
prev = []
for n in range(1, len + 1):
p = prime_factors(PiPart(n))
prev.append(Select(p, prev))
return prev
print(A336519List(39))
CROSSREFS
Sequence in context: A331474 A093892 A104254 * A231576 A336520 A190286
KEYWORD
nonn,base
AUTHOR
Peter Luschny, Aug 21 2020
STATUS
approved