This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258139 Number of ways to write n as p^2 + q with p and q both prime. 7
 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 0, 1, 0, 2, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 2, 0, 2, 0, 3, 1, 0, 0, 1, 0, 3, 1, 0, 1, 2, 0, 3, 0, 1, 1, 2, 0, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 0, 3, 1, 0, 0, 2, 0, 2, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS Conjecture: For any integer n > 0, we have a(n+r) > 0 for some r = 0,1,2,3,4,5. Moreover, if n = 6*k + 2, then a(n) > 0 except for k = 0, 1, 12, 28, 102, 117, 168, 4079. We have verified the conjecture for n up to 10^9. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 FORMULA G.f.: (Sum_{k>=1} x^prime(k))*(Sum_{k>=1} x^(prime(k)^2)). - Ilya Gutkovskiy, Feb 05 2017 EXAMPLE a(11) = 2 since 11 = 2^2 + 7 = 3^2 + 2 with 2, 3, 7 all prime. MATHEMATICA Do[r=0; Do[If[PrimeQ[n-Prime[k]^2], r=r+1], {k, 1, PrimePi[Sqrt[n]]}]; Print[n, " ", r]; Continue, {n, 1, 100}] CROSSREFS Cf. A000040, A002375, A258140, A258141. Sequence in context: A242498 A321927 A016194 * A261887 A037871 A037853 Adjacent sequences:  A258136 A258137 A258138 * A258140 A258141 A258142 KEYWORD nonn AUTHOR Zhi-Wei Sun, May 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 00:09 EDT 2019. Contains 328135 sequences. (Running on oeis4.)