login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037853 Sum{d(i)-d(i-1): d(i)>d(i-1), i=1,...,m}, where Sum{d(i)*3^i: i=0,1,...,m} is base 3 representation of n. 3
0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 2, 2, 2, 3, 2, 2, 4, 3, 2, 2, 2, 2, 2, 1, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

This is the base-3 down-variation sequence; see A297330. - Clark Kimberling, Jan 18 2018

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MAPLE

A037853 := proc(n)

    a := 0 ;

    dgs := convert(n, base, 3);

    for i from 2 to nops(dgs) do

        if op(i, dgs)>op(i-1, dgs) then

            a := a+op(i, dgs)-op(i-1, dgs) ;

        end if;

    end do:

    a ;

end proc: # R. J. Mathar, Oct 16 2015

MATHEMATICA

g[n_, b_] := Differences[IntegerDigits[n, b]]; b = 3; z = 120;

Table[-Total[Select[g[n, b], # < 0 &]], {n, 1, z}];  (*A037853*)

Table[Total[Select[g[n, b], # > 0 &]], {n, 1, z}];   (*A037844*)

(* Clark Kimberling, Jan 18 2018 *)

CROSSREFS

Cf. A037844, A297330.

Sequence in context: A258139 A261887 A037871 * A255237 A291954 A106799

Adjacent sequences:  A037850 A037851 A037852 * A037854 A037855 A037856

KEYWORD

nonn,base

AUTHOR

Clark Kimberling

EXTENSIONS

Definition corrected by R. J. Mathar, Oct 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 08:54 EDT 2019. Contains 327995 sequences. (Running on oeis4.)