login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037854
Sum_{i=1..m, d(i)>d(i-1)} d(i)-d(i-1), where Sum_{i=0..m} d(i)*4^i is the base 4 representation of n.
3
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 0, 0, 3, 2, 1, 0, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 1, 1, 3, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0
OFFSET
1,8
COMMENTS
This is the base-4 down-variation sequence; see A297330. - Clark Kimberling, Jan 18 2018
LINKS
MAPLE
A037854 := proc(n)
a := 0 ;
dgs := convert(n, base, 4);
for i from 2 to nops(dgs) do
if op(i, dgs)>op(i-1, dgs) then
a := a+op(i, dgs)-op(i-1, dgs) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 19 2015
MATHEMATICA
d[n_] := d[n] = Differences[RealDigits[n, 4][[1]]]
Table[Total[Select[d[n], # > 0 &]], {n, 1, z}]; (* A037845 *)
-Table[Total[Select[d[n], # < 0 &]], {n, 1, z}]; (* A037854 *)
(* Clark Kimberling, Oct 20 2015 *)
CROSSREFS
Cf. A297330.
Sequence in context: A362427 A218253 A037872 * A362633 A091229 A290255
KEYWORD
nonn,base
EXTENSIONS
Definition swapped with A037845 by R. J. Mathar, Oct 19 2015
STATUS
approved