login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240675
Number of partitions p of n such that exactly one number is in both p and its conjugate.
3
1, 0, 0, 3, 4, 6, 8, 8, 9, 22, 22, 34, 50, 60, 74, 105, 120, 144, 186, 234, 280, 358, 440, 524, 665, 782, 954, 1150, 1354, 1630, 1944, 2258, 2666, 3170, 3728, 4365, 5128, 5976, 6978, 8144, 9488, 10952, 12700, 14716, 16932, 19558, 22434, 25764, 29505, 33782
OFFSET
1,4
COMMENTS
Second column of the array at A240181. Multiplicities greater than 1 are not counted; e.g. there is exactly one number that is in both {4,1,1} and {3,1,1,1}.
LINKS
Manfred Scheucher, Sage Script
EXAMPLE
a(6) counts these 6 partitions: 51, 42, 411, 3111, 2211, 21111, of which the respective conjugates are 21111, 2211, 3111, 411, 42, 51.
MATHEMATICA
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; b[n_] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* A240674 *)
Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
PROG
(PARI) conjug(v) = {my(m = matrix(#v, vecmax(v))); for (i=1, #v, for (j=1, v[i], m[i, j] = 1; ); ); vector(vecmax(v), i, sum(j=1, #v, m[j, i])); }
a(n) = {my(v = partitions(n)); my(nb = 0); for (k=1, #v, if (#setintersect(Set(v[k]), Set(conjug(v[k]))) == 1, nb++); ); nb; } \\ Michel Marcus, Jun 02 2015
CROSSREFS
Sequence in context: A368152 A242822 A295996 * A072152 A199015 A196098
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 12 2014
EXTENSIONS
More terms from Manfred Scheucher, Jun 01 2015
STATUS
approved