login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240678
Primes p such that p*10+k is prime for exactly one value of the digit k.
4
11, 29, 41, 47, 71, 79, 83, 131, 137, 139, 151, 163, 173, 181, 191, 227, 257, 263, 277, 281, 293, 307, 311, 313, 359, 383, 449, 491, 503, 509, 557, 563, 569, 577, 587, 593, 601, 617, 647, 659, 661, 677, 683, 719, 739, 743, 751, 809, 821, 827, 857, 877, 881
OFFSET
1,1
LINKS
EXAMPLE
11 is in the sequence because 113 is prime, but 111, 117 and 119 are not prime.
MATHEMATICA
Select[Prime[Range[200]], Total[Boole[PrimeQ[10 #+{1, 3, 7, 9}]]]==1&] (* Harvey P. Dale, Apr 19 2019 *)
PROG
(PARI) forprime(p=2, 1500, t=0; forstep(k=1, 9, 2, if(isprime(p*10+k), t++)); if(t==1, print1(p, ", ")))
(Python)
from sympy import isprime, primerange
def ok(p): return sum(1 for k in [1, 3, 7, 9] if isprime(p*10+k)) == 1
def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
print(aupto(881)) # Michael S. Branicky, Nov 29 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Apr 10 2014
STATUS
approved