Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 29 2021 11:31:13
%S 11,29,41,47,71,79,83,131,137,139,151,163,173,181,191,227,257,263,277,
%T 281,293,307,311,313,359,383,449,491,503,509,557,563,569,577,587,593,
%U 601,617,647,659,661,677,683,719,739,743,751,809,821,827,857,877,881
%N Primes p such that p*10+k is prime for exactly one value of the digit k.
%H Colin Barker, <a href="/A240678/b240678.txt">Table of n, a(n) for n = 1..1000</a>
%e 11 is in the sequence because 113 is prime, but 111, 117 and 119 are not prime.
%t Select[Prime[Range[200]],Total[Boole[PrimeQ[10 #+{1,3,7,9}]]]==1&] (* _Harvey P. Dale_, Apr 19 2019 *)
%o (PARI) forprime(p=2, 1500, t=0; forstep(k=1, 9, 2, if(isprime(p*10+k), t++)); if(t==1, print1(p, ", ")))
%o (Python)
%o from sympy import isprime, primerange
%o def ok(p): return sum(1 for k in [1, 3, 7, 9] if isprime(p*10+k)) == 1
%o def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
%o print(aupto(881)) # _Michael S. Branicky_, Nov 29 2021
%Y Cf. A067267, A119289, A240679, A240680, A240689.
%K nonn,base
%O 1,1
%A _Colin Barker_, Apr 10 2014