login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240673 Triangle read by rows: T(n, k) = v(n, k)*((1/v(n, k)) mod prime(k)), with v(n, k) = prod(j=1, n, prime(j))/prime(k), (n>=1, 1<=k<=n). 1
1, 3, 4, 15, 10, 6, 105, 70, 126, 120, 1155, 1540, 1386, 330, 210, 15015, 20020, 6006, 25740, 16380, 6930, 255255, 170170, 306306, 145860, 46410, 157080, 450450, 4849845, 3233230, 3879876, 8314020, 6172530, 3730650, 9129120, 9189180 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

These coefficients have the following property: for any number x between 0 and primorial(n)-1, x = sum(i=1, n, T(n,k)*(x modulo prime(i))) modulo primorial(n). Example, with the 3 first primes: 2, 3, and 5; and x=47, x is [47%2, 47%3, 47%5] = [1, 2, 2]. And 15*1 + 10*2 + 6*2 = 15 + 20 + 12 = 47.

LINKS

Table of n, a(n) for n=1..36.

Matthias Schmitt, A function to calculate all relative prime numbers up to the product of the first n primes, arXiv:1404.0706 [math.NT] (see Example table on page 9).

Ramin Zahedi, On algebraic structure of the set of prime numbers, arXiv:1209.3165 [math.GM], 2012.

Ramin Zahedi, On a Deterministic Property of the Category of k-th Numbers: A Deterministic Structure Based on a Linear Function for Redefining the k-th Numbers in Certain Intervals, arXiv:1408.1888 [math.GM], 2014.

FORMULA

T(n, k) = v(n, k) * ((1/v(n, k)) mod prime(k)), where v(n, k) = prod(j=1, n, prime(j))/prime(k).

T(n, n) = A002110(n-1) * A079276(n). - Peter Luschny, Apr 12 2014

EXAMPLE

Triangle starts:

1;

3, 4;

15, 10, 6;

105, 70, 126, 120;

1155, 1540, 1386, 330, 210;

MAPLE

T := proc(n, k)

v := mul(ithprime(j), j=1..n)/ithprime(k);

v * ((1/v) mod ithprime(k)) end:

seq(print(seq(T(n, k), k=1..n)), n=1..7); # Peter Luschny, Apr 12 2014

MATHEMATICA

lift[Rational[1, n_], p_] := Module[{m}, m /. Solve[n*m == 1, m, Modulus -> p][[1]]]; lift[1, 2] = 1;

v[n_, k_] := Product[Prime[j], {j, 1, n}]/Prime[k];

T[n_, k_] := v[n, k]*lift[1/v[n, k], Prime[k]];

Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2017 *)

PROG

(PARI) T(n, k) = {my(val = prod(j=1, n, prime(j))/prime(k)); val * lift(1/Mod(val, prime(k))); }

CROSSREFS

Cf. A000040 (primes), A002110 (primorials), A070826 (first column), A079276.

Sequence in context: A070971 A130113 A004735 * A066830 A192211 A083061

Adjacent sequences:  A240670 A240671 A240672 * A240674 A240675 A240676

KEYWORD

nonn,tabl

AUTHOR

Michel Marcus, Apr 10 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 07:12 EST 2018. Contains 317258 sequences. (Running on oeis4.)