login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192211
Number of zero trace primitive elements in Galois field GF(2^n).
6
0, 0, 3, 4, 15, 12, 63, 72, 207, 290, 979, 864, 4095, 5250, 13485, 16496, 65535, 69948, 262143, 240000, 888888, 1319758, 4106167, 3318144, 16199225, 22355866, 56730861, 66385676, 266917769, 267331800, 1073741823, 1073809184, 3481794591, 5726404746, 16262257795
OFFSET
1,3
REFERENCES
R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997. Chapter 2 discusses primitivity in sections 1-2 and trace in section 3.
LINKS
W.-S. Chou and S.D. Cohen, Primitive elements with zero traces, Finite Fields and Their Appl. 7 (2001), 125-141; DOI:10.1006/ffta.2000.0284.
FORMULA
a(n) = n * A152049(n). [Joerg Arndt, Jul 03 2011]
PROG
(GAP)
p := 2;
for n in [1..17] do
F := GF(p^n);
num := 0;
for f in F do
if (f = Zero(F)) then continue; fi;
if (Trace(f) <> Zero(F)) then continue; fi;
if (Order(f) <> Size(F) - 1) then continue; fi;
num := num + 1;
od;
Print (num, ", ");
od;
CROSSREFS
Cf. A192212, A192213, A192214, A192215, A192216 for other primes.
Sequence in context: A240673 A066830 A359070 * A083061 A363561 A285475
KEYWORD
nonn,hard
AUTHOR
Pasha Zusmanovich, Jun 25 2011
EXTENSIONS
Terms 69948, ..., 1073809184 from Joerg Arndt, Jun 26 2011
Terms >1073809184 from Joerg Arndt, Jul 03 2011
STATUS
approved