login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285475
Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood.
3
1, 3, 4, 15, 16, 63, 64, 255, 256, 1023, 1024, 4095, 4096, 16383, 16384, 65535, 65536, 262143, 262144, 1048575, 1048576, 4194303, 4194304, 16777215, 16777216, 67108863, 67108864, 268435455, 268435456, 1073741823, 1073741824, 4294967295, 4294967296
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
From Colin Barker, Apr 19 2017: (Start)
G.f.: (1 + 3*x - x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = (-1 - (-2)^n + (-1)^n + 3*2^n)/2.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3. (End)
a(2*n-1) + a(2*n) = A083420(n). - Paul Curtz, Dec 16 2024
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 3; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
Cf. A083420.
Cf. A000302 (even bisection), A024036 (odd bisection).
Sequence in context: A192211 A083061 A363561 * A341779 A136641 A373262
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 19 2017
STATUS
approved