login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080924
Jacobsthal gap sequence.
6
0, 1, 3, 1, 15, 1, 63, 1, 255, 1, 1023, 1, 4095, 1, 16383, 1, 65535, 1, 262143, 1, 1048575, 1, 4194303, 1, 16777215, 1, 67108863, 1, 268435455, 1, 1073741823, 1, 4294967295, 1, 17179869183, 1, 68719476735, 1, 274877906943, 1, 1099511627775, 1
OFFSET
0,3
COMMENTS
Inverse binomial transform of A080925
From Peter Bala, Dec 26 2012: (Start)
Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(1/4) = 0.79761 68651 30459 16010 ... = 1/(1 + 1/(3 + 1/(1 + 1/(15 + 1/(1 + 1/(63 + 1/(1 + 1/(255 + ...)))))))). See A111317. (End)
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 3", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Apr 19 2017
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
a(2n) = 3*A001045(2n) = 3*A002450(n) = 4^n-1, a(2n+1)=1.
a(n) = (2^n-2*(-1)^n+(-2)^n)/2.
G.f.: x*(1+4*x)/((1+x)*(1+2*x)*(1-2*x)).
E.g.f.: (exp(2*x)-2*exp(-x)+exp(-2*x))/2.
MATHEMATICA
CoefficientList[Series[x (1 + 4 x) / ((1 + x) (1 + 2 x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 05 2013 *)
LinearRecurrence[{-1, 4, 4}, {0, 1, 3}, 42] (* Jean-François Alcover, Sep 21 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
STATUS
approved