login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080926
Partial sums of A080925.
7
0, 1, 6, 19, 60, 181, 546, 1639, 4920, 14761, 44286, 132859, 398580, 1195741, 3587226, 10761679, 32285040, 96855121, 290565366, 871696099, 2615088300, 7845264901, 23535794706, 70607384119, 211822152360, 635466457081
OFFSET
0,3
COMMENTS
This is the sequence A(0,1;2,3;4) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]
FORMULA
a(n) = Sum{i=0..n, Sum{k=1..i, Binomial(i, 2k-2)2^(2k-2)}}
G.f.: x*(1+3*x)/((1+x)*(1-x)*(1-3x)).
E.g.f.: (3*exp(3x)+exp(-x))/4-exp(x).
a(n) = (3*3^n+(-1)^n)/4-1.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See my comment and link. [Wolfdieter Lang, Oct 18 2010]
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+4 od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
MATHEMATICA
CoefficientList[Series[x (1 + 3 x) / ((1 + x) (1 - x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{3, 1, -3}, {0, 1, 6}, 30] (* Harvey P. Dale, Oct 02 2018 *)
PROG
(Magma) [(3*3^n+(-1)^n)/4-1: n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
CROSSREFS
Sequence in context: A272227 A272587 A125069 * A184189 A152098 A041673
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
STATUS
approved