Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:45:09
%S 0,1,6,19,60,181,546,1639,4920,14761,44286,132859,398580,1195741,
%T 3587226,10761679,32285040,96855121,290565366,871696099,2615088300,
%U 7845264901,23535794706,70607384119,211822152360,635466457081
%N Partial sums of A080925.
%C This is the sequence A(0,1;2,3;4) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [_Wolfdieter Lang_, Oct 18 2010]
%H Vincenzo Librandi, <a href="/A080926/b080926.txt">Table of n, a(n) for n = 0..300</a>
%H Wolfdieter Lang, <a href="/A080926/a080926.pdf">Notes on certain inhomogeneous three term recurrences.</a> [_Wolfdieter Lang_, Oct 18 2010]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-3).
%F a(n) = Sum{i=0..n, Sum{k=1..i, Binomial(i, 2k-2)2^(2k-2)}}
%F G.f.: x*(1+3*x)/((1+x)*(1-x)*(1-3x)).
%F E.g.f.: (3*exp(3x)+exp(-x))/4-exp(x).
%F a(n) = (3*3^n+(-1)^n)/4-1.
%F a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See my comment and link. [_Wolfdieter Lang_, Oct 18 2010]
%p a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+4 od: seq(a[n], n=0..33); # _Zerinvary Lajos_, Dec 14 2008
%t CoefficientList[Series[x (1 + 3 x) / ((1 + x) (1 - x) (1 - 3 x)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 06 2013 *)
%t LinearRecurrence[{3,1,-3},{0,1,6},30] (* _Harvey P. Dale_, Oct 02 2018 *)
%o (Magma) [(3*3^n+(-1)^n)/4-1: n in [0..30]]; // _Vincenzo Librandi_, Aug 06 2013
%K nonn,easy
%O 0,3
%A _Paul Barry_, Feb 26 2003