login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080923
First differences of A003946.
5
1, 3, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616
OFFSET
0,2
COMMENTS
Sum of consecutive pairs of elements of A025192.
The alternating sign sequence with g.f. (1-x^2)/(1+3x) gives the diagonal sums of A110168. - Paul Barry, Jul 14 2005
Let M = an infinite lower triangular matrix with the odd integers (1,3,5,...) in every column, with the leftmost column shifted up one row. Then A080923 = lim_{n->inf} M^n. - Gary W. Adamson, Feb 18 2010
a(n+1), n >= 0, with o.g.f. ((1-x^2)/(1-3*x)-1)/x = (3-x)/(1-3*x) provides the coefficients in the formal power series for tan(3*x)/tan(x) = (3-z)/(1-3*z) = Sum_{n>=0} a(n+1)*z^n, with z = tan(x)^2. Convergence holds for 0 <= z < 1/3, i.e., |x| < Pi/6, approximately 0.5235987758. For the numerator and denominator of this o.g.f. see A034867 and A034839, respectively. - Wolfdieter Lang, Jan 18 2013
FORMULA
G.f.: (1-x^2)/(1-3*x).
G.f.: 1/(1 - 3*x + x^2 - 3*x^3 + x^4 - 3*x^5 + ...). - Gary W. Adamson, Jan 06 2011
a(n) = 2^3*3^(n-2), n >= 2, a(0) = 1, a(1) = 3. - Wolfdieter Lang, Jan 18 2013
MATHEMATICA
CoefficientList[Series[(1 - x^2) / (1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 05 2013 *)
CROSSREFS
Essentially the same as A005051, A026097 and A083583.
Sequence in context: A153774 A052855 A133787 * A118264 A006365 A178543
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 26 2003
STATUS
approved