login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153774
a(2*n) = 3*a(2*n-1), a(2*n+1) = 3*a(2*n) - 1, with a(1) = 1.
3
1, 3, 8, 24, 71, 213, 638, 1914, 5741, 17223, 51668, 155004, 465011, 1395033, 4185098, 12555294, 37665881, 112997643, 338992928, 1016978784, 3050936351, 9152809053, 27458427158, 82375281474, 247125844421, 741377533263, 2224132599788, 6672397799364, 20017193398091
OFFSET
1,2
COMMENTS
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] := 11, (i>1), A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(2n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
FORMULA
From R. J. Mathar, Mar 13 2010: (Start)
a(n) = (7*3^(n - 1) + 2 + (-1)^n)/8.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3).
G.f.: x*(-1 + 2*x^2)/ ((1-x) * (3*x-1) * (1+x)). (End)
E.g.f.: (1/24)*(3*exp(-x) - 16 + 6*exp(x) + 7*exp(3*x)). - G. C. Greubel, Aug 27 2016
EXAMPLE
a(2) = 3*1 = 3.
a(3) = 3*a(2)-1 = 8.
a(4) = 3*a(3) = 24.
MAPLE
A153774 := proc(n) 1/4+(-1)^n/8+7*3^(n-1)/8 ; end proc: seq(A153774(n), n=1..80) ; # R. J. Mathar, Mar 13 2010
MATHEMATICA
LinearRecurrence[{3, 1, -3}, {1, 3, 8}, 30] (* or *) Rest[ CoefficientList[ Series[x (-1+2x^2)/((1-x)(3x-1)(1+x)), {x, 0, 30}], x]] (* Harvey P. Dale, Jun 08 2011 *)
RecurrenceTable[{a[1] == 1, a[2] == 3, a[3] == 8, a[n] == 3 a[n-1] + a[n-2] - 3 a[n-3]}, a, {n, 30}] (* Vincenzo Librandi, Aug 28 2016 *)
PROG
(Magma) I:=[1, 3, 8]; [n le 3 select I[n] else 3*Self(n-1) + Self(n-2) - 3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 28 2016
(PARI) a(n)=(3^(n-1)*7)\/8 \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
Sequence in context: A079121 A027077 A291243 * A052855 A133787 A080923
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 01 2009
STATUS
approved