OFFSET
0,2
COMMENTS
The array of T(n,k) with T(0,k) = A141325(k) and successive differences T(n,k) = T(n-1,k+1) - T(n-1,k) in further rows is
1, 1, 1, 1, 3, 5, 9, 13, 21, 33, 55,..
0, 0, 0, 2, 2, 4, 4, 8, 12, 22,..
0, 0, 2, 0, 2, 0, 4, 4, 10,...
0, 2, -2, 2, -2, 4, 0, 6,..
2, -4, 4, -4, 6, -4, 6,..
-6, 8, -8, 10, -10, 10,...
with T(n,n) = A078008(n), T(n,n+1) = -A167030(n), T(n,n+2) = A128209(n), T(n,n+3) = -a(n). All these sequences along the diagonals obey the recurrences a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) and a(n) = 5*a(n-2) - 4*a(n-4).
Conjecture: For n >= 6, a(n) is the third largest natural number whose Collatz orbit has length n+2. - Markus Sigg, Sep 14 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
FORMULA
a(n) = A078008(n) - 2.
a(n) = +2*a(n-1) +a(n-2) -2*a(n-3).
a(n) = a(n-1) + 2*a(n-2) + 4.
G.f.: (1 - 5*x^2) / ( (1-x)*(2*x-1)*(1+x) ).
E.g.f.: (1/3)*(2*exp(-x) - 6*exp(x) + exp(2*x)). - G. C. Greubel, Aug 27 2016
a(n) = 4*A000975(n-3) for n >= 3. - Markus Sigg, Sep 14 2020
MATHEMATICA
Table[(2^n + 2*(-1)^n - 6)/3, {n, 0, 25}] (* or *) LinearRecurrence[{2, 1, -2}, {-1, -2, 0}, 25] (* G. C. Greubel, Aug 27 2016 *)
PROG
(Magma) [2^n/3 +2*(-1)^n/3-2: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=(2^n+2*(-1)^n-6)/3 \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Curtz, Jan 01 2009
STATUS
approved