login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231037
T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3 and at least one element with value (x(i,j)-1) mod 3, and upper left element zero
11
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 10, 0, 0, 0, 0, 72, 32, 2, 0, 0, 32, 736, 1344, 278, 12, 0, 0, 80, 9726, 17984, 20250, 2988, 18, 0, 0, 560, 96882, 677204, 783848, 375620, 23058, 56, 0, 0, 2080, 1194032, 18856728, 79772488, 36327118, 6620496, 199272, 170, 0, 0
OFFSET
1,9
COMMENTS
Table starts
.0..0......0.........0...........0...............0...............0
.0..0......0.........4...........0..............32..............80
.0..2.....10........72.........736............9726...........96882
.0..0.....32......1344.......17984..........677204........18856728
.0..2....278.....20250......783848........79772488......5472540636
.0.12...2988....375620....36327118.....10140483166...1844073908022
.0.18..23058...6620496..1587011224...1171740348034.555813932009140
.0.56.199272.114765278.69795938150.139409083454936
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 2*a(n-1) +a(n-2) +4*a(n-3) -4*a(n-4)
k=3: [order 9]
k=4: [order 37]
Empirical for row n:
n=2: a(n) = 3*a(n-1) +6*a(n-2) +32*a(n-4) -20*a(n-5) +24*a(n-6) -16*a(n-7)
n=3: [order 33] for n>34
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1....0..1..1..0....0..2..1..0....0..2..0..2....0..1..0..1
..1..2..2..2....2..2..2..0....0..1..2..0....1..1..1..0....1..2..2..0
..1..0..1..0....1..0..1..0....0..2..1..0....2..0..2..0....1..0..1..0
CROSSREFS
Column 2 is A230813
Sequence in context: A153772 A197007 A011449 * A048243 A159814 A169774
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 03 2013
STATUS
approved