login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167030
a(n) = (2^n - (-1)^n - 3)/3.
7
-1, 0, 0, 2, 4, 10, 20, 42, 84, 170, 340, 682, 1364, 2730, 5460, 10922, 21844, 43690, 87380, 174762, 349524, 699050, 1398100, 2796202, 5592404, 11184810, 22369620, 44739242, 89478484, 178956970, 357913940, 715827882
OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..240 from Vincenzo Librandi)
Nicolas Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, arXiv preprint arXiv:1711.10906 [cs.DM], 2017.
FORMULA
a(n) = A001045(n) - 1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: (1 - 2*x - x^2)/((x^2 - 1)*(1-2*x)).
2*a(n) = A153772(n+1).
a(2n+1) - a(2n) = A047849(n).
a(2n+1) = A020988(n); a(2n+2) = 2*A020988(n).
a(n+2) = 2*A000975(n).
a(2n+2) = a(2n) + 2^(2n).
E.g.f.: (1/3)*(exp(2*x) - 3*exp(x) - exp(-x)). - G. C. Greubel, May 30 2016
MATHEMATICA
f[n_] := (2^n - (-1)^n - 3)/3; Array[f, 32, 0]
PROG
(Magma) [(2^n-(-1)^n)/3 -1: n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=(2^n-(-1)^n)/3-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
A026644 is an essentially identical sequence.
Sequence in context: A283251 A318975 A255386 * A026644 A167193 A026666
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Oct 27 2009
EXTENSIONS
Edited by R. J. Mathar, Dec 17 2010
STATUS
approved