login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255386
Number of binary words of length n with exactly one occurrence of subword 010 and exactly one occurrence of subword 101.
6
0, 0, 0, 0, 2, 4, 10, 20, 42, 84, 166, 320, 608, 1140, 2116, 3892, 7102, 12868, 23170, 41488, 73918, 131104, 231578, 407520, 714672, 1249368, 2177736, 3785688, 6564362, 11355940, 19602154, 33767228, 58056786, 99638364, 170711134, 292011872, 498747632
OFFSET
0,5
FORMULA
G.f.: -2*x^4*(x-1)^2/((x^2-x+1)*(x^2+x-1)^3).
EXAMPLE
a(4) = 2: 0101, 1010.
a(5) = 4: 00101, 01011, 10100, 11010.
a(6) = 10: 000101, 001011, 010110, 010111, 011010, 100101, 101000, 101001, 110100, 111010.
a(8) = 42: 00000101, 00001011, 00010110, 00010111, 00011010, 00101100, 00101110, 00101111, 00110100, 00111010, 01001101, 01011000, 01011001, 01011100, 01011110, 01011111, 01100101, 01101000, 01101001, 01110100, 01111010, 10000101, 10001011, 10010110, 10010111, 10011010, 10100000, 10100001, 10100011, 10100110, 10100111, 10110010, 11000101, 11001011, 11010000, 11010001, 11010011, 11100101, 11101000, 11101001, 11110100, 11111010.
MAPLE
a:= n-> coeff(series(-2*x^4*(x-1)^2/
((x^2-x+1)*(x^2+x-1)^3), x, n+1), x, n):
seq(a(n), n=0..50);
MATHEMATICA
LinearRecurrence[{4, -4, -2, 5, -2, -2, 2, 1}, {0, 0, 0, 0, 2, 4, 10, 20}, 40] (* Harvey P. Dale, Apr 09 2016 *)
CROSSREFS
Sequence in context: A283213 A283251 A318975 * A167030 A026644 A167193
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 05 2015
STATUS
approved