OFFSET
1,1
COMMENTS
If n is prime, then a(n) = n*(n-2). If n is semiprime, then a(n) gives the sum of the squares of the prime factors of n (with multiplicity).
a(n) is negative for n = 1, 81, 90, 96, 100, 108, 120, 125, 126, 128, 135, .... - Charles R Greathouse IV, May 06 2015
EXAMPLE
a(6) = sopfr(6)^2 - 2(6) = (2+3)^2 - 12 = 25 - 12 = 13.
a(8) = sopfr(8)^2 - 2(8) = (2+2+2)^2 - 16 = 36 - 16 = 20.
MATHEMATICA
sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; f[1] = 0; Table[sopfr[n]^2 - 2 n, {n, 100}]
PROG
(PARI) sopfr(n)=my(f=factor(n)); sum(i=1, #f~, f[i, 1]*f[i, 2])
a(n)=sopfr(n)^2 - 2*n \\ Charles R Greathouse IV, May 06 2015
CROSSREFS
KEYWORD
sign
AUTHOR
Wesley Ivan Hurt, May 05 2015
STATUS
approved