login
A167028
Number of terms in the expansion of the determinant of a skew-symmetric matrix of order n.
3
0, 1, 0, 6, 0, 120, 0, 5250, 0, 395010, 0, 45197460, 0, 7299452160, 0, 1580682203100, 0, 441926274289500, 0, 154940341854097800, 0, 66565404923242024800, 0, 34389901168124209507800, 0, 21034386936107260971255000, 0, 15032296693671903309613950000, 0, 12411582569784462888618434640000, 0
OFFSET
1,4
COMMENTS
If n is odd a(n)=0.
Essentially a duplicate of A002370. - N. J. A. Sloane, Oct 27 2009
FORMULA
Exponential generating function: (1-x^2)^(-1/4) exp(x^2/4).
Asymptotics (for even n): a(n)= (n!/Pi)exp( (-3log(n)+1+log(2))/4 ) GAMMA(3/4) (1+O(1/n)). [corrected by Vaclav Kotesovec, Feb 15 2015]. More elegant form is a(n) ~ n! * 2^(1/4) * exp(1/4) * GAMMA(3/4) / (Pi * n^(3/4)).
EXAMPLE
Example: the determinant of a skew symmetric matrix of order n=4 is
det(A)=A(1,2)A(1,2)A(3,4)A(3,4) + 2A(1,2)A(2,3)A(1,4)A(3,4) -2A(1,2)A(2,4)A(1,3)A(3,4)+ A(1,3)A(1,3)A(2,4)A(2,4)-2A(1,3)A(2,4)A(1,4)A(2,3)+A(1,4)A(1,4)A(2,3)A(2,3).
MAPLE
for n from 1 to 20 do a[n]:=n!coeftayl( (1-x^2)^(-1/4)*exp(x^2/4), x=0, n) od;
MATHEMATICA
Rest[CoefficientList[Series[(1-x^2)^(-1/4)*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 15 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pietro Majer, Oct 27 2009
STATUS
approved