login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152098
Quartic product sequence: m = 4; p = 4^3; a(n) = Product_{k=1..(n-1)/2} ( 1 + m*cos(k*Pi/n)^2 + p*cos(k*Pi/n)^4 ).
1
1, 1, 1, 6, 19, 61, 240, 769, 2869, 9774, 34831, 121969, 428640, 1509301, 5297641, 18644406, 65502139, 230343541, 809678160, 2846468089, 10006911469, 35178340254, 123671565271, 434760784009, 1528407648960, 5373087522061
OFFSET
0,4
COMMENTS
Ratio at n=30 is 3.515489857847214.
FORMULA
a(n) = Product_{k=1..(n-1)/2} ( 1 + m*cos(k*Pi/n)^2 + p*cos(k*Pi/n)^4 ), with m=4 and p=64.
G.f.: (1-x)*(1+x-8*x^2-16*x^3)/(1-x-9*x^2-4*x^3+16*x^4). - Colin Barker, Oct 23 2013
MAPLE
seq(coeff(series((1-x)*(1+x-8*x^2-16*x^3)/(1-x-9*x^2-4*x^3+16*x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 26 2019
MATHEMATICA
m=4; l=4^3; Table[Product[1 +m*Cos[k*Pi/n]^2 +l*Cos[k*Pi/n]^4, {k, (n -1)/2}], {n, 0, 30}]//Round
LinearRecurrence[{1, 9, 4, -16}, {1, 1, 1, 6, 19}, 30] (* G. C. Greubel, Sep 26 2019 *)
PROG
(PARI) a(n) = round(prod(k=1, (n-1)/2, 1+4*cos(k*Pi/n)^2+4^3*cos(k*Pi/n)^4)) \\ Colin Barker, Oct 23 2013
(PARI) my(x='x+O('x^30)); Vec((1-x)*(1+x-8*x^2-16*x^3)/(1-x-9*x^2-4*x^3 +16*x^4)) \\ G. C. Greubel, Sep 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)* (1+x-8*x^2-16*x^3)/(1-x-9*x^2-4*x^3+16*x^4) )); // G. C. Greubel, Sep 26 2019
(Sage)
def A152098_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)*(1+x-8*x^2-16*x^3)/(1-x-9*x^2-4*x^3+16*x^4)).list()
A152098_list(30) # G. C. Greubel, Sep 26 2019
(GAP) a:=[1, 1, 6, 19];; for n in [5..30] do a[n]:=a[n-1]+9*a[n-2]+4*a[n-3] -16*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Sep 26 2019
CROSSREFS
Sequence in context: A125069 A080926 A184189 * A041673 A137195 A055916
KEYWORD
nonn,easy
AUTHOR
STATUS
approved