OFFSET
0,4
COMMENTS
Limiting ratio at n=30 equals 5.461866286689612.
Exact value of this limit is (1 + sqrt(205) + sqrt(2*(7+sqrt(205))))/4 = 5.46185461429652018724... - Vaclav Kotesovec, Nov 30 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
a(n) = Product_{k=1..(n-1)/2} (1 + m*cos(k*Pi/n)^2 + q*cos(k*Pi/n)^4), with m=3*4 and q = 3*4^3.
G.f.: 1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4). - Vaclav Kotesovec, Nov 30 2012
MATHEMATICA
With[{m = 3*4, q = 3*4^3}, Table[Round[Product[1 + m*Cos[k*Pi/n]^2 + q*Cos[k*Pi/n]^4, {k, 1, (n-1)/2}]], {n, 0, 30}]] (* modified by G. C. Greubel, May 15 2019 *)
CoefficientList[Series[1+x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4), {x, 0, 22}], x] (* Vaclav Kotesovec, Nov 30 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3 +144*x^4)) \\ G. C. Greubel, May 15 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4) )); // G. C. Greubel, May 15 2019
(Sage) (1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 15 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 24 2008
STATUS
approved