The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152096 Quartic product sequence: a(n) = Product_{k=1..(n-1)/2} (1 + m*cos(k*Pi/n)^2 + q*cos(k*Pi/n)^4), with m=12 and q = 3*4^3. 2
 1, 1, 1, 16, 55, 355, 1888, 9829, 57145, 294064, 1683055, 8893147, 49635520, 267601933, 1472118817, 8012384080, 43823300455, 239288418067, 1306681029664, 7139564615413, 38980858167625, 212971742938096, 1162967620577311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Limiting ratio at n=30 equals 5.461866286689612. Exact value of this limit is (1 + sqrt(205) + sqrt(2*(7+sqrt(205))))/4 = 5.46185461429652018724... - Vaclav Kotesovec, Nov 30 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 FORMULA a(n) = Product_{k=1..(n-1)/2} (1 + m*cos(k*Pi/n)^2 + q*cos(k*Pi/n)^4), with m=3*4 and q = 3*4^3. G.f.: 1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4). - Vaclav Kotesovec, Nov 30 2012 MATHEMATICA With[{m = 3*4, q = 3*4^3}, Table[Round[Product[1 + m*Cos[k*Pi/n]^2 + q*Cos[k*Pi/n]^4, {k, 1, (n-1)/2}]], {n, 0, 30}]] (* modified by G. C. Greubel, May 15 2019 *) CoefficientList[Series[1+x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4), {x, 0, 22}], x] (* Vaclav Kotesovec, Nov 30 2012 *) PROG (PARI) my(x='x+O('x^30)); Vec(1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3 +144*x^4)) \\ G. C. Greubel, May 15 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4) )); // G. C. Greubel, May 15 2019 (Sage) (1 + x*(1-12*x^2)/(1-x-27*x^2-12*x^3+144*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 15 2019 CROSSREFS Sequence in context: A244805 A188838 A256049 * A188701 A297341 A228757 Adjacent sequences:  A152093 A152094 A152095 * A152097 A152098 A152099 KEYWORD nonn AUTHOR Roger L. Bagula and Gary W. Adamson, Nov 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 02:25 EDT 2021. Contains 346367 sequences. (Running on oeis4.)