login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152094
Quartic product sequence: a(n) = Product_{k=1..floor((n-1)/2)} (1 + m*cos(k*Pi/n)^2 + q*cos(k*Pi/n)^4 ), with m = 2*4, q=2*4^3.
7
1, 1, 1, 11, 37, 179, 869, 3683, 18389, 80179, 385029, 1739651, 8134709, 37397203, 173097317, 799986979, 3694294933, 17085418099, 78904394437, 364797113027, 1685324681973, 7789441113619, 35993781049381, 166339303316579
OFFSET
0,4
COMMENTS
Limiting ratio at n=30: 4.621205928975311.
Exact value of this limit is (1 + sqrt(137) + sqrt(2*(5 + sqrt(137))))/4 = 4.621196599954103646539033792... - Vaclav Kotesovec, Nov 30 2012
LINKS
FORMULA
G.f.: 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4). - Vaclav Kotesovec, Nov 30 2012
MATHEMATICA
Table[Product[1 +8*Cos[k*Pi/n]^2 +128*Cos[k*Pi/n]^4, {k, 1, (n-1)/2}], {n, 0, 30}]//Round (* modified by G. C. Greubel, May 08 2019 *)
CoefficientList[Series[1+x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4), {x, 0, 23}], x] (* Vaclav Kotesovec, Nov 30 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)) \\ G. C. Greubel, May 08 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4) )); // G. C. Greubel, May 08 2019
(Sage) (1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
CROSSREFS
Sequence in context: A355630 A306423 A287018 * A227412 A160623 A147556
KEYWORD
nonn,easy
AUTHOR
STATUS
approved