OFFSET
0,4
COMMENTS
Limiting ratio at n=30: 4.621205928975311.
Exact value of this limit is (1 + sqrt(137) + sqrt(2*(5 + sqrt(137))))/4 = 4.621196599954103646539033792... - Vaclav Kotesovec, Nov 30 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
G.f.: 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4). - Vaclav Kotesovec, Nov 30 2012
MATHEMATICA
Table[Product[1 +8*Cos[k*Pi/n]^2 +128*Cos[k*Pi/n]^4, {k, 1, (n-1)/2}], {n, 0, 30}]//Round (* modified by G. C. Greubel, May 08 2019 *)
CoefficientList[Series[1+x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4), {x, 0, 23}], x] (* Vaclav Kotesovec, Nov 30 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)) \\ G. C. Greubel, May 08 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4) )); // G. C. Greubel, May 08 2019
(Sage) (1 + x*(1-8*x^2)/(1-x-18*x^2-8*x^3+64*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 24 2008
STATUS
approved