

A341779


Numbers k such that k and k+1 are both antitau numbers (A046642).


2



3, 4, 15, 16, 64, 100, 195, 196, 255, 256, 483, 484, 676, 783, 784, 1023, 1024, 1155, 1156, 1295, 1296, 1443, 1444, 1599, 1600, 1936, 2116, 2703, 2704, 3363, 3364, 3844, 4096, 4623, 4624, 4899, 4900, 5183, 5184, 5476, 5776, 6399, 6400, 6723, 6724, 7395, 7396
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Since the even antitau numbers (A268066) are square numbers, all the terms are either of the form 4*k^2  1 or 4*k^2.


LINKS



EXAMPLE

3 is a term since 3 and 4 are both antitau numbers: gcd(3, tau(3)) = gcd(3, 2) = 1 and gcd(4, tau(4)) = gcd(4, 3) = 1.


MATHEMATICA

antiTauQ[n_] := CoprimeQ[n, DivisorSigma[0, n]]; s = {}; Do[k = 4*n^2; If[antiTauQ[k], If[antiTauQ[k  1], AppendTo[s, k  1]]; If[antiTauQ[k + 1], AppendTo[s, k]]], {n, 1, 50}]; s


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



