login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114701
Number of sets {p, p'}, where p is a partition of n and p' is conjugate partition of p such that p and p' have no common parts.
3
1, 0, 1, 1, 1, 1, 2, 2, 4, 5, 5, 7, 9, 9, 13, 15, 18, 22, 30, 32, 41, 48, 57, 65, 82, 88, 111, 124, 148, 169, 203, 225, 275, 310, 363, 408, 484, 537, 635, 709, 824, 918, 1075, 1191, 1379, 1540, 1767, 1971, 2269, 2517, 2889, 3208, 3656, 4068, 4629, 5120, 5813, 6452, 7280, 8068, 9113
OFFSET
0,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..120 (first 71 terms from Jean-François Alcover)
Eric Weisstein's World of Mathematics, Conjugate Partition.
EXAMPLE
a(6)=2 because the pairs of conjugate partitions of 6 are {[6], [1, 1, 1, 1, 1, 1]}, {[3, 3], [2, 2, 2]}, {[5, 1], [2, 1, 1, 1, 1]}, {[4, 2], [2, 2, 1, 1]}, {[3, 2, 1], [3, 2, 1]}, {[3, 1, 1, 1], [4, 1, 1]} and only in the first two pairs there are no common parts.
MAPLE
with(combinat): a:=proc(n) local P, ct, j: P:=partition(n): ct:=0: for j from 1 to numbpart(n) do if convert(P[j], set) intersect convert(conjpart(P[j]), set) = {} then ct:=ct+1 else fi: od: ceil(ct/2): end: seq(a(n), n=0..55); # for 55 terms execution takes hours - Emeric Deutsch, Apr 15 2006
MATHEMATICA
ConjugatePartition[e_] := Length /@ Most[NestWhileList[Function[{s}, Select[s - 1, # > 0 &]], e, # =!= {} &]]; (* this ConjugatePartition code is due to Arnoud B. in MathWorld (see link) *)
a[n_] := a[n] = Module[{P, ct, j}, P = IntegerPartitions[n]; ct = 0; For[j = 1, j <= PartitionsP[n], j++, If[P[[j]] ~Intersection~ ConjugatePartition[ P[[j]]] == {}, ct = ct + 1]]; Ceiling[ct/2]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 18 2024 *)
CROSSREFS
Cf. A000041.
Sequence in context: A277191 A335129 A035632 * A349464 A325260 A325325
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 18 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 15 2006
a(0)=1 prepended and a(56)-a(60) added by Alois P. Heinz, Sep 28 2023
STATUS
approved