login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array: t(n,k) is the number of partitions p of n such that the number of distinct numbers in the intersection of p and its conjugate is k, for k >= 0, n >= 1.
4

%I #19 Sep 28 2023 18:32:26

%S 0,1,2,2,0,1,2,3,2,4,1,4,6,0,1,4,8,3,8,8,5,1,10,9,11,10,22,8,1,1,14,

%T 22,17,3,18,34,19,5,1,18,50,21,12,26,60,34,13,2,30,74,52,19,0,1,36,

%U 105,57,29,4,44,120,93,34,5,1,60,144,128,40,13,64,186

%N Array: t(n,k) is the number of partitions p of n such that the number of distinct numbers in the intersection of p and its conjugate is k, for k >= 0, n >= 1.

%C First two columns are A240674 and A240675. Sum of numbers in row n is A000041(n), for n >= 1. Number of numbers in row n is A240450(n).

%H Clark Kimberling, <a href="/A240181/b240181.txt">Table of n, a(n) for n = 1..200</a>

%e First 15 rows:

%e 0 ... 1

%e 2

%e 2 ... 0 ... 1

%e 2 ... 3

%e 2 ... 4 ... 1

%e 4 ... 6 ... 0 ...1

%e 4 ... 8 ... 3

%e 8 ... 8 ... 5 ... 1

%e 10 .. 9 ... 11

%e 10 .. 22 .. 8 ... 1 ... 1

%e 14 .. 22 .. 17 .. 3

%e 18 .. 34 .. 19 .. 5 ... 1

%e 18 .. 50 .. 21 .. 12

%e 26 .. 60 .. 34 .. 13 .. 2

%e 30 .. 74 .. 52 .. 19 .. 0 .. 1

%e In the following table, p and c(p) denote a partition of 6 and its conjugate:

%e p ........ c(p)

%e 6 ........ 111111

%e 51 ....... 21111

%e 42 ....... 2211

%e 411 ...... 3111

%e 33 ....... 222

%e 321 ...... 321

%e 3111 ..... 411

%e 222 ...... 33

%e 2211 ..... 42

%e 21111 .... 51

%e 111111 ... 6

%e Let I(p) be number of numbers in the intersection of c and c(p); Then I(p) = 0 for 4 choices of p, I(p) = 1 for 6 choices, I(p) = 2 for 0 choices, and I(p) = 3 for 1 choice. Thus, row 6 is 4 6 0 1.

%t z = 30; conjugatePartition[part_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[part]; c = Map[BinCounts[#, {0, 1 + Max[#]}] &[Map[Length, Map[Intersection[#, conjugatePartition[#]] &, IntegerPartitions[#]]]] &, Range[z]]; Flatten[c] (* this sequence *)

%t Table[Length[c[[n]]], {n, 1, z}] (* A240450 *) (* _Peter J. C. Moses_, Apr 10 2014 *)

%Y Cf. A240674, A240675, A240450.

%K nonn,easy,tabf

%O 1,3

%A _Clark Kimberling_, Apr 12 2014

%E Name corrected by _Clark Kimberling_, Sep 28 2023