login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242887 Number T(n,k) of compositions of n into parts with distinct multiplicities and with exactly k parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 0, 6, 4, 1, 0, 1, 1, 4, 4, 5, 1, 0, 1, 0, 9, 8, 15, 6, 1, 0, 1, 1, 9, 5, 15, 21, 7, 1, 0, 1, 0, 10, 8, 20, 6, 28, 8, 1, 0, 1, 1, 12, 12, 6, 96, 42, 36, 9, 1, 0, 1, 0, 15, 12, 30, 192, 168, 64, 45, 10, 1, 0, 1, 1, 13, 9, 20, 142, 238, 204, 93, 55, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,14

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

EXAMPLE

T(5,1) = 1: [5].

T(5,3) = 6: [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].

T(5,4) = 4: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1].

T(5,5) = 1: [1,1,1,1,1].

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1, 1;

  0, 1, 0,  1;

  0, 1, 1,  3,  1;

  0, 1, 0,  6,  4,  1;

  0, 1, 1,  4,  4,  5,  1;

  0, 1, 0,  9,  8, 15,  6,  1;

  0, 1, 1,  9,  5, 15, 21,  7,  1;

  0, 1, 0, 10,  8, 20,  6, 28,  8, 1;

  0, 1, 1, 12, 12,  6, 96, 42, 36, 9, 1;

MAPLE

b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,

      `if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, x^j*

       b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):

seq(T(n), n=0..16);

MATHEMATICA

b[n_, i_, s_] := b[n, i, s] = If[n==0, Total[s]!, If[i<1, 0, Expand[Sum[ If[j>0 && MemberQ[s, j], 0, x^j*b[n-i*j, i-1, If[j==0, s, s ~Union~ {j}] ]/j!], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-Fran├žois Alcover, Feb 08 2017, translated from Maple *)

PROG

(PARI)

T(n)={Vecrev(((r, k, b, w)->if(!k||!r, if(r, 0, w!*x^w), sum(m=0, r\k, if(!m || !bittest(b, m), self()(r-k*m, k-1, bitor(b, 1<<m), w+m)/m!))))(n, n, 1, 0))}

{ for(n=0, 10, print(T(n))) } \\ Andrew Howroyd, Aug 31 2019

CROSSREFS

Columns k=0-10 give: A000007, A057427, A059841 (for n>1), A321773, A321774, A321775, A321776, A321777, A321778, A321779, A321780.

Row sums give A242882.

T(2n,n) gives A321772.

Cf. A242896.

Sequence in context: A152892 A193002 A122960 * A307753 A181116 A051834

Adjacent sequences:  A242884 A242885 A242886 * A242888 A242889 A242890

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, May 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 14:42 EDT 2020. Contains 336276 sequences. (Running on oeis4.)