login
A321777
Number of compositions of n into parts with distinct multiplicities and with exactly seven parts.
2
1, 7, 28, 42, 168, 238, 280, 428, 595, 595, 826, 910, 1078, 1232, 1716, 1498, 2023, 2093, 2450, 2450, 2996, 3228, 3626, 3710, 4193, 4263, 4998, 4928, 5916, 5838, 6426, 6510, 7371, 7455, 8316, 8464, 9198, 9268, 10318, 10248, 11319, 11473, 12524, 12460, 13636
OFFSET
7,2
LINKS
FORMULA
Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^7*(1 + 8*x + 36*x^2 + 78*x^3 + 245*x^4 + 475*x^5 + 719*x^6 + 1069*x^7 + 1419*x^8 + 1539*x^9 + 1645*x^10 + 1478*x^11 + 1100*x^12 + 708*x^13 + 505*x^14) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-1) - a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) + 3*a(n-7) + 3*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) - 2*a(n-12) - 3*a(n-13) - 3*a(n-14) - 2*a(n-15) - a(n-16) + a(n-18) + a(n-19) + a(n-20) + a(n-21) for n>27.
(End)
CROSSREFS
Column k=7 of A242887.
Sequence in context: A155712 A015817 A103253 * A269451 A139607 A068206
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 18 2018
STATUS
approved