login
A155712
Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.
2
7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
OFFSET
1,1
COMMENTS
From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)
LINKS
MAPLE
N:= 1000: # for terms <= N
A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))), a=1..floor(sqrt(N)))}
intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))), c=1..floor(sqrt(N)))}:
sort(convert(A, list)); # Robert Israel, Jan 19 2025
PROG
(PARI) isA155712(n, /* optional 2nd arg allows to get other sequences */c=[6, 3]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return); 1}
for( n=1, 999, isA155712(n) && print1(n", ")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025
KEYWORD
easy,nonn,changed
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved