OFFSET
1,1
COMMENTS
From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
N:= 1000: # for terms <= N
A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))), a=1..floor(sqrt(N)))}
intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))), c=1..floor(sqrt(N)))}:
sort(convert(A, list)); # Robert Israel, Jan 19 2025
PROG
(PARI) isA155712(n, /* optional 2nd arg allows to get other sequences */c=[6, 3]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return); 1}
for( n=1, 999, isA155712(n) && print1(n", ")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved