login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155717 Numbers of the form N = a^2 + 7b^2 for some positive integers a,b. 11
8, 11, 16, 23, 29, 32, 37, 43, 44, 53, 56, 64, 67, 71, 72, 77, 79, 88, 92, 99, 107, 109, 112, 113, 116, 121, 127, 128, 137, 144, 148, 149, 151, 161, 163, 172, 176, 179, 184, 191, 193, 197, 200, 203, 207, 211, 212, 224, 232, 233, 239, 253, 256, 259, 261, 263, 268 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A020670 (which allows for a and b to be zero).

If N=a^2+7*b^2 is a term then 7*N=(7*b)^2+7*a^2 is also a term. Conversely,if 7*N is a term then N is a term. Example: N=56; N/7=8 is a term, N*7=7^2+7*7^2 is a term. Sequences A154777, A092572 and A154778 have the same property with 7 replaced by prime numbers 2,3 and 5 respectively. - Jerzy R Borysowicz, May 22 2020

LINKS

Table of n, a(n) for n=1..57.

MATHEMATICA

Select[Range[300], Reduce[a>0 && b>0 && # == a^2 + 7b^2, {a, b}, Integers] =!= False&] (* Jean-Fran├žois Alcover, Nov 17 2016 *)

PROG

(PARI) isA155717(n, /* optional 2nd arg allows us to get other sequences */c=7) = { for(b=1, sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}

for( n=1, 300, isA155717(n) & print1(n", "))

CROSSREFS

Cf. A000404, A154777, A092572, A097268, A154778, A155707-A155716, A155560-A155578.

Sequence in context: A154685 A068591 A065348 * A188197 A234096 A111254

Adjacent sequences:  A155714 A155715 A155716 * A155718 A155719 A155720

KEYWORD

easy,nonn

AUTHOR

M. F. Hasler, Jan 25 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 00:57 EDT 2021. Contains 344980 sequences. (Running on oeis4.)