

A155717


Numbers of the form N = a^2 + 7b^2 for some positive integers a,b.


11



8, 11, 16, 23, 29, 32, 37, 43, 44, 53, 56, 64, 67, 71, 72, 77, 79, 88, 92, 99, 107, 109, 112, 113, 116, 121, 127, 128, 137, 144, 148, 149, 151, 161, 163, 172, 176, 179, 184, 191, 193, 197, 200, 203, 207, 211, 212, 224, 232, 233, 239, 253, 256, 259, 261, 263, 268
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A020670 (which allows for a and b to be zero).
If N=a^2+7*b^2 is a term then 7*N=(7*b)^2+7*a^2 is also a term. Conversely,if 7*N is a term then N is a term. Example: N=56; N/7=8 is a term, N*7=7^2+7*7^2 is a term. Sequences A154777, A092572 and A154778 have the same property with 7 replaced by prime numbers 2,3 and 5 respectively.  Jerzy R Borysowicz, May 22 2020


LINKS

Table of n, a(n) for n=1..57.


MATHEMATICA

Select[Range[300], Reduce[a>0 && b>0 && # == a^2 + 7b^2, {a, b}, Integers] =!= False&] (* JeanFrançois Alcover, Nov 17 2016 *)


PROG

(PARI) isA155717(n, /* optional 2nd arg allows us to get other sequences */c=7) = { for(b=1, sqrtint((n1)\c), issquare(nc*b^2) & return(1))}
for( n=1, 300, isA155717(n) & print1(n", "))


CROSSREFS

Cf. A000404, A154777, A092572, A097268, A154778, A155707A155716, A155560A155578.
Sequence in context: A154685 A068591 A065348 * A188197 A234096 A111254
Adjacent sequences: A155714 A155715 A155716 * A155718 A155719 A155720


KEYWORD

easy,nonn


AUTHOR

M. F. Hasler, Jan 25 2009


STATUS

approved



