OFFSET
1,1
COMMENTS
The terms form a subset of A153039 because 2*T(n, k) - 7 = (2*n+1)*(2*k+1) are not prime.
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
FORMULA
Sum_{k=1..n} T(n, k) = A151675(n). - N. J. A. Sloane, May 31 2009
T(n, k) = A155724(n,k) + 8. - L. Edson Jeffery, Oct 12 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n + 3.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*(9*(1-(-1)^n) + 2*(2-3*(-1)^n)*n - 4*(-1)^n*n^2).
G.f.: x*y*(8 - 5*(x+y) + 4*x*y)/((1-x)*(1-y))^2.
E.g.f.: 4 - (4+x)*exp(x) - (4+y)*exp(y) + (4+x+y+2*x*y)*exp(x+y).
(End)
EXAMPLE
Triangle begins:
8;
11, 16;
14, 21, 28;
17, 26, 35, 44;
20, 31, 42, 53, 64;
23, 36, 49, 62, 75, 88;
26, 41, 56, 71, 86, 101, 116;
29, 46, 63, 80, 97, 114, 131, 148;
32, 51, 70, 89, 108, 127, 146, 165, 184;
35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
MATHEMATICA
Flatten@Table[2*n*m+m+n+4, {n, 20}, {m, n}] (* Vincenzo Librandi, Jan 29 2012 *)
PROG
(PARI) for(m=1, 9, for(n=1, m, print1(2*m*n+m+n+4", "))) \\ Charles R Greathouse IV, Dec 27 2011
(Magma)
A154685:= func< n, k | 2*n*k+n+k+4 >;
[A154685(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 21 2025
(Python)
def A154685(n, k): return 2*n*k+n+k+4
print(flatten([[A154685(n, k) for k in range(1, n+1)] for n in range(1, 16)])) # G. C. Greubel, Jan 21 2025
CROSSREFS
KEYWORD
AUTHOR
Vincenzo Librandi, Jan 18 2009
EXTENSIONS
Clarified comment. - R. J. Mathar, Jan 24 2009
STATUS
approved