login
A155724
Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.
6
0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
OFFSET
1,2
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
FORMULA
T(n, k) = A154685(n, k) - 8. - L. Edson Jeffery, Oct 12 2012
2*T(n, k) + 9 = (2*k+1)*(2*n+1). - Vincenzo Librandi, Nov 18 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n - 5 (main diagonal).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*( 4*(-1)^(n+1)*n^2 + 2*(2-3*(-1)^n)*n - 7*(1-(-1)^n)).
G.f.: x*y*(3*x + 3*y - 4*x*y)/((1-x)*(1-y))^2. (End)
EXAMPLE
Triangle begins:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
MATHEMATICA
Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
PROG
(Magma) /* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
(Python)
def A155724(n, k): return 2*n*k+n+k-4
print(flatten([[A155724(n, k) for k in range(1, n+1)] for n in range(1, 16)])) # G. C. Greubel, Jan 21 2025
CROSSREFS
All terms are in A155723.
Cf. A162261 (row sums).
Columns k: A008585 (k=1), A016885 (k=2), A017053 (k=3), 9*A020705 (k=4).
Diagonals include: A139570, A181510, A271625.
Sequence in context: A371472 A295573 A080939 * A289485 A304299 A221951
KEYWORD
nonn,tabl,easy
AUTHOR
Vincenzo Librandi, Jan 25 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jun 23 2010
STATUS
approved