login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162261
a(n) = (2*n^3 + 5*n^2 - 7*n)/2.
4
0, 11, 39, 90, 170, 285, 441, 644, 900, 1215, 1595, 2046, 2574, 3185, 3885, 4680, 5576, 6579, 7695, 8930, 10290, 11781, 13409, 15180, 17100, 19175, 21411, 23814, 26390, 29145, 32085, 35216, 38544, 42075, 45815, 49770, 53946, 58349, 62985, 67860
OFFSET
1,2
FORMULA
Row sums from A155724: a(n) = Sum_{m=1..n} (2*m*n + m + n - 4).
From Vincenzo Librandi, Mar 04 2012: (Start)
G.f.: x^2*(11 - 5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = A151675(n) - 8*n. - L. Edson Jeffery, Oct 12 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=2} 1/a(n) = 8*log(2)/63 + 1166/19845.
Sum_{n>=2} (-1)^n/a(n) = (32*log(2) - 2*Pi - 3566/315)/63. (End)
MATHEMATICA
CoefficientList[Series[x*(11-5*x)/(1-x)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 11, 39, 90}, 50](* Vincenzo Librandi, Mar 04 2012 *)
PROG
(Magma) [(2*n^3 + 5*n^2 - 7*n)/2 : n in [1..50]]; // Wesley Ivan Hurt, May 07 2021
CROSSREFS
Sequence in context: A103738 A348487 A045801 * A004188 A347477 A163634
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 29 2009
EXTENSIONS
New name from Vincenzo Librandi, Mar 04 2012
STATUS
approved