The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321773 Number of compositions of n into parts with distinct multiplicities and with exactly three parts. 5
 1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 3..1000 FORMULA Conjectures from Colin Barker, Dec 11 2018: (Start) G.f.: x^3*(1 + 3*x + 5*x^2) / ((1 - x)^2*(1 + x)*(1 + x + x^2)). a(n) = a(n-2) + a(n-3) - a(n-5) for n>7. (End) EXAMPLE From Gus Wiseman, Nov 11 2020: (Start) Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:   111   112   113   114   115   116   117   118   119         121   122   141   133   161   144   181   155         211   131   222   151   224   171   226   191               212   411   223   233   225   244   227               221         232   242   252   262   272               311         313   323   333   334   335                           322   332   414   343   344                           331   422   441   424   353                           511   611   522   433   434                                       711   442   443                                             622   515                                             811   533                                                   551                                                   722                                                   911 (End) MATHEMATICA Table[Length[Join@@Permutations/@Select[IntegerPartitions[n, {3}], !UnsameQ@@#&]], {n, 0, 100}] (* Gus Wiseman, Nov 11 2020 *) CROSSREFS Column k=3 of A242887. A235451 counts 3-part compositions with distinct run-lengths A001399(n-6) counts 3-part compositions in the complement. A014311 intersected with A335488 ranks these compositions. A140106 is the unordered case, with Heinz numbers A285508. A261982 counts non-strict compositions of any length. A001523 counts unimodal compositions, with complement A115981. A007318 and A097805 count compositions by length. A032020 counts strict compositions. A047967 counts non-strict partitions, with Heinz numbers A013929. A242771 counts triples that are not strictly increasing. Cf. A000212, A000217, A001840, A128422, A156040, A332834, A337461, A337484, A337603, A337604. Sequence in context: A021278 A336761 A143940 * A083349 A065230 A316478 Adjacent sequences:  A321770 A321771 A321772 * A321774 A321775 A321776 KEYWORD nonn AUTHOR Alois P. Heinz, Nov 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 04:52 EDT 2021. Contains 345452 sequences. (Running on oeis4.)