login
A321770
Consider the tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the third component of P(n, k).
7
5, 13, 29, 17, 25, 73, 53, 89, 169, 85, 65, 97, 37, 41, 137, 109, 233, 425, 205, 193, 305, 125, 185, 505, 349, 505, 985, 509, 337, 481, 173, 149, 373, 241, 277, 565, 305, 157, 205, 65, 61, 221, 185, 445, 797, 377, 389, 629, 265, 493, 1325, 905, 1261, 2477
OFFSET
1,1
COMMENTS
The tree P runs uniquely through every primitive Pythagorean triple.
See A321768 for additional comments about P.
All terms are odd.
FORMULA
a(n)^2 = A321768(n)^2 + A321769(n)^2.
Empirically:
- T(n, 1) = A001844(n),
- T(n, (3^(n-1) + 1)/2) = A001653(n+1),
- T(n, 3^(n-1)) = A053755(n).
EXAMPLE
The first rows are:
5
13, 29, 17
25, 73, 53, 89, 169, 85, 65, 97, 37
PROG
(PARI) M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[3, 1])
CROSSREFS
See A321768 and A321769 for the other components.
Sequence in context: A189485 A226616 A226618 * A322926 A178854 A224339
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Nov 18 2018
STATUS
approved