login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224339
Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2.
3
1, 5, 13, 29, 31, 65, 57, 125, 121, 155, 133, 377, 183, 285, 403, 509, 307, 605, 381, 899, 741, 665, 553, 1625, 781, 915, 1093, 1653, 871, 2015, 993, 2045, 1729, 1535, 1767, 3509, 1407, 1905, 2379, 3875, 1723, 3705, 1893, 3857, 3751, 2765, 2257, 6617, 2801, 3905, 3991, 5307
OFFSET
1,2
COMMENTS
Multiplicative because A113184 is.
Logarithmic derivative of A224340.
LINKS
FORMULA
a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d.
a(n) = A113184(n^2).
a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - Andrew Howroyd, Jul 28 2018
Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - Amiram Eldar, Jul 01 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - Amiram Eldar, Oct 13 2022
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +...
where
exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +...
MATHEMATICA
dif[n_]:=Module[{divs=Divisors[n^2], od, ev}, od=Total[Select[divs, OddQ]]; ev=Total[Select[divs, EvenQ]]; Abs[od-ev]]; Array[dif, 60] (* Harvey P. Dale, Jul 16 2015 *)
f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 01 2022 *)
PROG
(PARI) {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))}
for(n=1, 64, print1(a(n), ", "))
(PARI) a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ Andrew Howroyd, Jul 28 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul D. Hanna, Apr 03 2013
STATUS
approved