Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 13 2022 06:37:56
%S 1,5,13,29,31,65,57,125,121,155,133,377,183,285,403,509,307,605,381,
%T 899,741,665,553,1625,781,915,1093,1653,871,2015,993,2045,1729,1535,
%U 1767,3509,1407,1905,2379,3875,1723,3705,1893,3857,3751,2765,2257,6617,2801,3905,3991,5307
%N Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2.
%C Multiplicative because A113184 is.
%C Logarithmic derivative of A224340.
%H Paul D. Hanna, <a href="/A224339/b224339.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d.
%F a(n) = A113184(n^2).
%F a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - _Andrew Howroyd_, Jul 28 2018
%F Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - _Amiram Eldar_, Jul 01 2022
%F Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - _Amiram Eldar_, Oct 13 2022
%e L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +...
%e where
%e exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +...
%t dif[n_]:=Module[{divs=Divisors[n^2],od,ev},od=Total[Select[divs,OddQ]];ev=Total[Select[divs,EvenQ]];Abs[od-ev]]; Array[dif,60] (* _Harvey P. Dale_, Jul 16 2015 *)
%t f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jul 01 2022 *)
%o (PARI) {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))}
%o for(n=1,64,print1(a(n),", "))
%o (PARI) a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ _Andrew Howroyd_, Jul 28 2018
%Y Cf. A065764, A113184, A224340.
%K nonn,mult
%O 1,2
%A _Paul D. Hanna_, Apr 03 2013