OFFSET
0,3
COMMENTS
Compare to: exp(-Sum_{n>=1} A113184(n)*x^n/n ) = Sum_{n>=1} (-x)^(n*(n+1)/2).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1000
FORMULA
Logarithmic derivative yields A224339.
EXAMPLE
L.g.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 +...+ A113184(n^2)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sumdiv(k^2, d, (-1)^d*d)*(-x)^k/k)+x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 03 2013
STATUS
approved