login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110585
Smallest number k of consecutive primes > p_n such that p_n^2 * p_(n+1) * p_(n+2) * ... * p_(n+k) is an abundant number.
3
1, 3, 7, 16, 29, 44, 65, 89, 120, 155, 192, 236, 282, 332, 390, 453, 520, 589, 666, 746, 832, 927, 1026, 1131, 1239, 1350, 1467, 1592, 1725, 1867, 2017, 2161, 2313, 2469, 2634, 2800, 2975, 3155, 3339, 3532, 3729, 3931, 4143, 4356, 4579, 4809, 5051, 5291
OFFSET
1,2
COMMENTS
The sequence arose while solving puzzle 329 from Carlos Rivera's Prime Puzzles & Problems Connection site.
EXAMPLE
a(2)=3 because the second prime being 3, then 3^2 * 5 * 7 * 11 = 3465 and sigma(3465) - 2*3465 = 558, a positive number (i.e., 3465 is abundant), but 3^2 * 5 * 7 = 315 and sigma(315) - 2*315 = -6, a nonpositive number (i.e., 315 is not abundant).
MATHEMATICA
abQ[n_] := DivisorSigma[1, n] > 2n; f[0] = 0; f[n_] := f[n] = Block[{k = f[n - 1]}, p = Fold[Times, Prime[n], Prime[ Range[n, n + k]]]; While[ !abQ[p], k++; p = p*Prime[n + k]]; k]; Table[ f[n], {n, 48}] (* Robert G. Wilson v *)
PROG
(PARI) forprime(p=2, 100, k=0; while(k++, if(sigma(n=p^2*prod(j=1, k, prime(j+primepi(p))))-n>n, print(k); break)))
CROSSREFS
Cf. A005101.
Sequence in context: A211379 A373104 A213180 * A184677 A224340 A240739
KEYWORD
nonn
AUTHOR
Igor Schein, Sep 13 2005
EXTENSIONS
Edited and extended by Robert G. Wilson v, Sep 15 2005
STATUS
approved